Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Curr Drug Discov Technol ; 20(4): e180423215957, 2023.
Article in English | MEDLINE | ID: covidwho-2290664

ABSTRACT

INTRODUCTION: Recently, the coronavirus disease 2019 (COVID-19) infection, with a vast spectrum of clinical and paraclinical symptoms has been a major health concern worldwide. Therapeutical management of COVID-19 includes antiviral and anti-inflammatory drugs. NSAIDs, as the second-line therapy, are often prescribed to relieve the symptoms of COVID-19. The a-L-guluronic acid (G2013) is a non-steroidal patented (PCT/EP2017/067920) agent with immunomodulatory properties. This study investigated the effect of G2013 on the outcome of COVID-19 in moderate to severe patients. METHODS: The disease's symptoms were followed up during hospitalization and for 4 weeks postdischarge in G2013 and control groups. Paraclinical indices were tested at the time of admission and discharge. Statistical analysis was performed on clinical and paraclinical parameters and ICU admission and death rate. RESULTS: The primary and secondary outcomes indicated the efficiency of G2013 on COVID-19 patients' management. There were significant differences in the duration of improvement of fever, coughing, fatigue/malaise. Also, a comparison of paraclinical indices at the time of admission and discharge showed significant change in prothrombin, D-dimer, and platelet. As the main findings of this study, G2013 significantly decreased the percentage of ICU admission (control:17 patients, G2013:1 patient) and death (control: 7 cases, G2013:0). CONCLUSION: These results conclude that G2013 has sufficient potential to be considered for moderate to severe COVID-19 patients, can significantly reduce the clinical and physical complications of this disease, has a positive effect on modulating the coagulopathy process, and aids in saving lives.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Aftercare , Patient Discharge
2.
Iran J Allergy Asthma Immunol ; 21(6): 677-686, 2022 Dec 24.
Article in English | MEDLINE | ID: covidwho-2204583

ABSTRACT

coronavirus disease of 2019 (COVID-19) can be complicated by acute respiratory distress syndrome (ARDS) and may be associated with cytokine storm and multiorgan failure. Anti-inflammatory agents, such as systemic corticosteroids, monoclonal antibodies, and nonsteroidal anti-inflammatory drugs (NSAIDs) can be used for this purpose. In this study, we evaluated the immunomodulatory effect of mannuronic acid (M2000), which is a novel NSAID, on COVID-19-related cytokine storms. This study was conducted in vitro on blood samples of 30 COVID-19 patients who presented with ARDS to a referral center. Peripheral blood mononuclear cells (PBMCs) were isolated from blood samples and incubated with phorbol myristate acetate for 24 hours. M2000 was administered with the dosages of 25 µg/well and 50 µg/well after 4 hours of incubation at 37°C. The quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to assess mRNA gene expression. Enzyme-linked immunosorbent assay (ELISA) was performed to evaluate the supernatant PBMC levels of interleukin (IL)-6, IL-17, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ. Both mRNA expression and the supernatant PBMC levels of IL-17, TNF-α, IL­6, and IFN­Î³ were decreased in PBMCs of COVID-19 patients treated with M2000 compared with the control  group. For the first time, it was observed that M2000 could be effective in alleviating the inflammatory cascade of COVID-19 patients based on an in vitro model. After further studies in vitro and in animal models, M2000 could be considered a novel NSAID drug in COVID-19 patients.


Subject(s)
COVID-19 , Cytokines , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cytokines/metabolism , Immunosuppressive Agents/therapeutic use , Interleukin-17 , Interleukin-6/metabolism , Leukocytes, Mononuclear/metabolism , Tumor Necrosis Factor-alpha/metabolism , Humans
3.
Hepatol Commun ; 6(6): 1262-1277, 2022 06.
Article in English | MEDLINE | ID: covidwho-1568068

ABSTRACT

During the pandemic, dexamethasone (DEX), remdesivir (RDV), hydroxychloroquine (HCQ), thapsigargin (TG), camostat mesylate (CaM), and pralatrexate were repurposed drugs for coronavirus disease 2019 (COVID-19). However, the side effects on the liver associated with the anti-COVID therapies are unknown. Cellular stresses by these drugs at 0-30 µM were studied using HepG2, Huh7, and/or primary human hepatocytes. DEX or RDV induced endoplasmic reticulum stress with increased X-box binding protein 1 and autophagic response with increased accumulation of microtubule-associated protein 1A/1B-light chain 3 (LC3-II). DEX and RDV had additive effects on the stress responses in the liver cells, which further increased expression of activating transcription factor 4 and C/EBP homology protein 1 (CHOP), and cell death. Alcohol pretreatment (50 mM) and DEX induced greater cellular stress responses than DEX and RDV. Pralatrexate induced Golgi fragmentation, cell cycle arrest at G0/G1 phase, activations of poly (ADP-ribose) polymerase-1 (PARP) and caspases, and cell death. Pralatrexate and alcohol had synergistic effects on the cell death mediators of Bim, caspase3, and PARP. The protease inhibitor CaM and TG induced autophagic response and mitochondrial stress with altered mitochondrial membrane potential, B-cell lymphoma 2, and cytochrome C. TG and HCQ induced autophagic response markers of Unc-51 like autophagy activating kinase, LC3-II, Beclin1, and Atg5, and severe ER stress marker CHOP. Conclusion: These results suggest that the anti-COVID-19 drugs, especially with drug-drug or alcohol-drug combinations, cause cellular stress responses and injuries in the liver cells.


Subject(s)
COVID-19 Drug Treatment , Endoplasmic Reticulum Stress , Ethanol/metabolism , Hepatocytes , Humans , Microtubule-Associated Proteins/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/metabolism , Thapsigargin/pharmacology , Transcription Factor CHOP/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL